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ABSTRACT 

 
Imaging modalities are widely used to explore and 
diagnose diseases. Feature extraction methods are 
used to quantitatively describe and identify objects 
of interest in acquired images, typically involving 
data compression. The extracted features are subject 
to clinical inference, whereby the compression ratio 
used for feature extraction can affect the inference 
performance. In this paper, a new method is 
introduced which allows for optimal data 
compression with respect to performance 
maximization of uncertain inference. The model 
introduced herein identifies objects of interest using 
selective data compression in the frequency domain. 
It quantifies the amount of information provided by 
the inference involving these objects, calculates the 
inference efficiency, and estimates its cost. By 
analyzing the effect of data compression on inference 
efficiency and cost, the method allows for the optimal 
selection of the compression ratio. The method is 
applied to prostate cancer diagnosis in ultrasound 
images.  
    

INTRODUCTION 
 

The increased volume and complexity of clinical 
information and knowledge processing has prompted 
the development of intelligent agents able to assist 
the physician in the decision making process. One of 
the most frequent problems encountered in 
developing and deploying such assisted diagnostic 
tools is generated by the need to compromise 
between their performance and cost. In order to 
decrease the volume of data and the complexity of 
data processing compression techniques are 
frequently used. While potentially reducing cost, 
such compression techniques may adversely affect 
the performance of the clinical inference, decision 
making, and diagnosis because of the simplifications 
and sometimes increased uncertainty resulting from 
compression. In this context, a challenge is 
represented by the relative lack of performance 
measures, which can be used to consistently guide 

the design and the deployment of assisted diagnostic  
tools relative to a required relationship between 
performance and cost.  From a technology 
development viewpoint, what are needed are 
quantifiable and reproducible measures for assessing 
the impact and optimizing the design of data and 
knowledge compression methods with respect to 
performance requirements.  With respect to the 
requirements of the healthcare system, what are 
needed are methods to perform cost-benefit analysis 
related to the deployment and operation of assisted 
diagnostic tools. 
 Imaging modalities are widely used to explore and 
diagnose diseases. Any imaging modality uses some 
data compression techniques in order to acquire and 
represent the images [1]. Different methods are used 
to quantitatively describe and identify objects of 
interest in the acquired images. Typically, these 
methods rely on object feature or signature extraction 
[2]. Such feature or signature extraction typically 
involves an implicit data compression, which allows 
for reducing the large number of dimensions of the 
initial image representation space to a more 
manageable number of dimensions in terms of storage 
and processing. According to [3], in an ultrasound 
image a prostate tumor is identified by its relatively 
inhomogeneous structure and hypoechoic character, 
i.e., its lack of ability to reflect ultrasound. Thus, 
methods used to represent knowledge related to 
tumors based on ultrasound images must extract 
tumor features to reflect this sonographic appearance.  
Preferably, these methods should also achieve 
significant data compression. They should allow for 
information processing in a timely manner with an 
acceptable level of performance and at an acceptable 
level of resources and cost.  Preferably, performance 
and cost measures should be available to allow for the 
optimization of the knowledge representation, i.e., 
feature extraction with respect to performance and 
cost. In this paper, a new method is introduced, which 
correlates performance and cost of clinical inference 
and analyzes the performance dependency on data 
compression related to feature extraction.   
 



 

FEATURE EXTRACTION AND INFERENCE 
 
Figure 1 shows a prostate and a tumor area in an 
ultrasound image. The objects margins have been 
identified by  an ultrasound specialist.  In this paper, a 
method for tumor representation and detection has 
been used similar to the method introduced in [4]. The 
method can extract tumor features during a training 
stage and can, during a deployment phase, 
intelligently assist the physician with the clinical 
inference by identifying prostate tumors areas in the 
analyzed images.   
 

 
 

Figure 1: Prostate cancer in an ultrasound image 
 
In the particular test environment used herein the 
expert user can select an ultrasound image for 
analysis , which can be, for example, a 2D image 
chosen from a 3D volume set of images. The user then 
defines the training region of interest (ROI) to be used 
for purposes of tumor feature extraction. The tumor 
features defined herein are the zero frequency (DC) 
component and the spectral power of the 2D 
frequency (Fourier) spectrum. The DC component 
(average intensity) is considered to represent 
knowledge about the tumor echogenicity. The 
spectral power is considered to represent knowledge 
about the tumor structure. The target data 
compression requirement is specified as a percentage 
of the 2D spectral power and is called spectral power 
compression (SPC). In the training ROI, the algorithm 
computes the corresponding 2D Fast Fourier 
Transform (FFT). Based on the targeted spectral 
power reduction, the equivalent reduced size of a 
power compressed ROI is computed such that the 
equivalent size-reduced ROI contains as much 
spectral power as targeted by the data compression 
requirement. The training and the compressed (size-
reduced) ROIs are shown in Figure 2. The size-
reduced ROI is  then automatically moved within the 
training ROI and the values for the DC component 

and for the spectral power are collected for each of 
the reduced ROI positions within the training ROI. 
 

 
 

Figure 2:  Training and compressed ROIs  
 
The resulting DC component and spectral power 
average values and ranges are considered to be the 
tumor’s signature. Thus, through the reduced-size 
ROI, the tumor features have been extracted as a 
function of the targeted spectral power reduction. The 
discrimination function applied in this paper is simple: 
if a ROI has both the DC component and the spectral 
power falling within the range of the tumor signature 
detected above then the ROI is classified as a tumor 
ROI. It is classified as a non-tumor ROI otherwise.  
 

INFERENCE PERFORMANCE  
 
Figure 3 shows the results of applying the tumor 
classification method for a SPC factor of 0.6 (60%). 
The area detected by the algorithm as having tumor 
signs, i.e., tumor signature, is marked Ss. The original 
prostate and tumor areas are marked Sp and St 
respectively. The overlap area between the tumor area 
and the area with detected tumor signs is marked Sts.  
 
Success Rate 
 
Let T denote the event that a tumor is present in the 
prostate gland and S the event that a tumor sign has 
been detected by the system. The success rate 
chosen herein is the positive predictive value (PPV), 
i.e., the probability of inferring that a certain image 
area belongs to the tumor if the area has been 
detected as having a tumor sign. The PPV is given by 
the conditional probability p(T|S).  
 From geometrical area considerations in Figure 3: 
 

PPV = p(T|S) = Sts / Ss.                             (1) 
 
Other similar measures of success are described in [5].  



 
 

Figure 3: Results of assisted tumor identification 
 
Inference Efficiency 
 
The PPV does not include information about the 
inference errors nor does it include information about 
the success relative to the particular image or case 
under consideration. Borrowing from Information 
Theory [7] and building on a previously introduced 
inference performance measures [6], a new 
performance measure called clinical inference 
efficiency is introduced herein. The amount of 
information associated with the presence of tumor in 
Figure 3 can be calculated as 
  
 i = - p(T) * log(p(T)),                (2) 
 
whereby throughout this paper log means log2. The 
probability p(T) can be calculated from Figure 3 from 
geometrical considerations as   
 

p(T) = St / Sp.                              (3) 
 
The information-theoretical concept of mutual 
information [7] is  extrapolated in this paper to 
describe the amount of information generated by the 
clinical inference:  
 

I = H(T) – H(T|S).              (4) 
 
whereby extrapolation the information-theoretical 
equations described in [7], the entropy related to the 
presence of tumor can be calculated as: 
 

H(T) = - p(T)*log(p(T)) - p(~T)*log(p(~T))            (5)     
 
and the predictive conditional entropies of tumor and 
tumor signs as:  
 

H(T|S) = - p(S)*p(T|S)*log (p(T|S)) - 
               - p(~S)*p(T|~S)*log (p(T|~S)) - 

                   - p(S)*p(~T|S)*log (p(~T|S)) - 
                   - p(~S)*p(~T|~S)*log (p(~T|~S)).               (6) 
 
The notation ~T denotes the opposite of T, i.e., the 
event that a tumor is not present in the prostate gland 
and ~S the opposite of S, i.e., the event that no tumor 
sign has been detected.  In geometrical terms, the area 
described by ~T is given by S~t = Sp – St and the area 
described by ~S is given by S~s = Sp – Ss. The 
probabilities required by Equations (5) and (6) can be 
calculated from Equation (1) and from geometrical 
considerations from Figure 3: 
 

p(T) = St/Sp, p(~T) = (Sp-St)/Sp = 1-p(T)                (7) 
p(S) = Ss/Sp, p(~S) = (Sp-Ss)/Sp = 1-p(S)               (8) 
p(~T|S) = 1 – p(T|S)               (9) 
NPV = p(~T|~S) = S~t~s/S~s =  
          = ( Sp - St - Ss + Sts ) / (Sp - Ss)                   (10)  
p(T|~S) = 1 - p(~T|~S),                                               (11) 

 
whereby NPV stands for the negative predictive value 
and S~t~s is the prostate area which is tumor-free and 
shows not tumor signs. Equation (4) represents an 
information-theoretical measure for the inference 
success: the amount of information generated by the 
inference. Compared to the success rate described by 
Equation (1) the amount of information given by 
Equation (4) also takes into account the potential 
errors generated by the inference. The inference 
information I has a maximum value if the inference is 
error free. An error free inference is characterized by 
the following probabilities: p(T|S) = 1, p(~T|S) = 0, 
p(~T|~S) = 1, and p(T|~S) = 0.  With other words: a 
tumor sign is observed if and only if a tumor is 
present. By modifying the SPC value the tumor 
signature changes. As a result, for each SPC value, 
the results of the inference may be different and 
therefore the probabilities described by Equations (1) 
and (7) to (11) are potentially different. Therefore the 
inference performance defined by Equations (1) and 
(4) depends on the SPC value, i.e., on the data 
compression ratio chosen for the tumor 
characterization and identification method. The 
inference capacity C is defined herein as the maximum 
value of the inference information:  
 

C = maxSPC (I),              (12) 
 
whereby the maximum value of information is 
considered over all possible SPC values. The 
inference efficiency is defined herein as 



 

 
η = I / C.             (13)  

 
By using Equation (13), a value of the spectral power 
compression can be chosen, which maximizes the 
inference efficiency relative to the case under 
consideration.  
 
Inference Process Cost 
 
Although ignored in many situations, the cost of the 
inference process is an implicit factor in making 
design, deployment and utilization decisions. The 
cost of inference can have many components: the 
initial investment to purchase the assisted detection 
algorithm, the cost related to using the algorithms, the 
cost of algorithm errors, etc. The inference error cost 
can be minimized by choosing the compression ratio 
which maximizes the inference efficiency described by 
Equation (13).  For the purposes of this paper, as a 
measure for the inference process cost the 
computation time required by the inference has been 
chosen. This cost measure illustrates only one of the 
aspects of the inference costs mentioned above: the 
computation time shows how long it takes the system 
to obtain inference results and is an indication of 
difficult for the user and therefore how expensive the 
procedure could be. The computation time for tumor 
identification is different for each SPC value due to 
the effect of data compression on the algorithm. The 
computation time t can be normalized to a value  
 

tn = t / tmax              (14) 
 
with tmax representing the maximum computation time 
considered over the different values of SPC. Equation 
(14) represents a measure of the inference process 
cost. 
 
Return-on-Investment 
 
An overall measure called Return-on-Investment 
(RETI) is introduced in this paper, which can be used 
to perform cost-benefit analysis related to the 
inference performance. The Return-on-Investment is 
defined as the ratio between a measure of success 
called return over a measure of deployment or 
operating cost called investment. For the purposes of 
this paper the inference efficiency given by Equation 
(13) is used as the measure of success. By using this 
measure the inference error costs are minimized, i.e., 
the return is maximized. Equation (14) is used as a 
measure for the inference cost. It results that the 
Return-on-Investment can be defined as:   

 
 RETI = η / tn                                (15) 

 
RESULTS AND DISCUSSIONS 

 
Table 1 shows the inference results for different 
values of SPC for the image in Figure 3.  Column CR 
shows the actual compression ratio in terms of the 
original vs. the reduced ROI size. The Time column 
shows the inference time in milliseconds required for 
tumor detection.  Column Ss in Table 1 shows the area 
detected by the algorithm as having tumor signs and 
Column Sts shows the size of the overlap area 
between St and Ss (Figure 3). According to expert 
identification, the prostate area Sp equals 10.28 cm2 
and the tumor area St equals 2.99 cm2. 
 
Table 1: Inference results 
 

SPC CR Time [ms] Ss [cm2] Sts [cm2] 
0.10 17.02 150 5.69 2.70 
 0.20 10.88 140 6.39 2.88 
0.30 5.76 125 5.33 2.73 
0.40 4.14 125 5.68 2.89 
0.50 3.03 120 5.68 2.99 
0.60 2.37 112 4.18 2.93 
0.70 1.85 112 4.67 2.99 
0.80 1.50 109 4.62 2.60 
0.90 1.16 100 3.27 2.36 
0.95 1.03 93 3.77 2.42 

 
Table 2 shows the values for the different inference 
performance measures defined in this paper as a 
function of SPC.  Figure 4 shows a graphical 
representation of the different inference performance 
measures presented in Table 2, whereby “Relative 
Performance” means any of the defined performance 
measures and the “Investment Cost” represents the 
inference process cost. It can be seen that different 
performance measures are maximized for different SPC 
values.  In the example considered in this paper, the 
Return-on-Investment is maximized for a SPC value of 
0.6. It can also be seen from Table 2 and from Figure 4 
that there does not exist a proportional relationship 
between compression ratio and performance. This 
happens because the inhomogeneous nature of the 
tumor structure is selectively reflected in different 
areas of the spectrum. For example, in Table 2, the 
success rate is higher for SPC = 0.9 than for SPC = 
0.95 because the compression with SPC = 0.9 has 
eliminated more of the high-frequency components 
not related to the tumor structure. A decision to 
choose a certain SPC value should be based on 



assessing the relevance of the different performance 
measures and selecting the appropriate measure given 
the goals for the study under consideration. 
 
Table 2: Inference performance measures 
 

SPC 
 

Success 
Rate 
(PPV) 

Inference 
Efficiency 

 

Inference 
Process 

Cost 

Return 
-on- 

Investment 
0.10 0.47 0.36 1.00 0.36 
0.20 0.45 0.39 0.86 0.45 
0.30 0.51 0.44 0.69 0.64 
0.40 0.51 0.54 0.69 0.78 
0.50 0.53 0.79 0.64 1.23 
0.60 0.70 1.00 0.56 1.79 
0.70 0.64 0.83 0.56 1.48 
0.80 0.56 0.49 0.53 0.92 
0.90 0.72 0.64 0.45 1.42 
0.95 0.64 0.54 0.38 1.42 

 
In this paper, for illustration purposes the results for 
only one 2D image have been presented. The method 
can be applied for multiple 2D images and 3D studies.  

 
Figure 4: Inference performance chart 

 
In equation (4) only the amount of predictive 
information has been considered. Rewriting the 
equation as I = H(S) – H(S|T) in accordance to 
information theory, the sensitivity p(S|T) and the 
specificity p(~S|~T) of the study could be considered.  
The inference capacity could be defined not over the 
maximum of inference information for one image but 
for a whole 3D volume set or for an application type 

e.g., prostate cancer. The method and the newly 
introduced performance measures can be applied to 
any type of objects of interest in any type of images. 
The cost function could be expanded to include other 
forms of cost. 
 

CONCLUSIONS 
 
In this paper, a new method has been introduced, 
which allows for optimized feature extraction and 
object recognition using selective data compression 
in the frequency domain. The method quantifies the 
amount of information provided by the clinical 
inference using the extracted object features, defines 
the inference efficiency related to this information, 
and measures the cost associated with the inference. 
The Return-on-Investment is introduced as an 
inference performance measure in order to correlate 
efficiency and cost. The method further establishes 
the dependency of inference efficiency, cost, and 
Return-on-Investment on data compression. The 
paper shows how data compression ratios can be 
determined which maximize the Return-on-Investment 
ratio. The method has been successfully applied to 
the recognition of prostate tumor patterns in 
ultrasound images. The herein introduced method is 
applicable to other types of images and to the 
recognition of other types of objects used in 
uncertain inference.  
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